1.9. Треугольные крылья
У треугольных крыльев за счет использования малых относительных толщин и малого удлинения можно до минимума свести волновое сопротивление, что особенно важно для сверхзвуковых скоростей полета. В то же время, большие хорды в корневой части крыла обеспечивают получение в этой зоне больших строительных высот, что уменьшает массу конструкции и дает большие объемы для размещения топлива и другой полезной нагрузки. Треугольные крылья обладают большой жесткостью и менее подвержены явлениям аэроупругости. С другой стороны, большая стреловидность по передней кромке и малый размах этих крыльев уменьшают его несущую способность и снижают эффективность механизации, что отрицательно сказывается на взлетно-посадочных характеристиках самолета. Наиболее распространенные конструктивно- силовые схемы треугольных крыльев:

  1. многолонжеронное крыло с лонжеронами, перпендикулярными плоскости симметрии самолета (а);
  2. однолонжеронное крыло с дополнительными стенками (б);
  3. многолонжеронное крыло с лонжеронами, расположенными по образующим крыла (в);
  4. кессонное крыло с вспомогательными стенками (г);
  5. лонжеронное крыло с подкосной балкой (д).

Особенности силовой работы треугольных крыльев заключаются в следующем.
Лонжероны, силовые панели, стенки, поставленные перпендикулярно плоскости симметрии самолета, обеспечивают наименьшую массу конструкции за счет передачи нагрузки с крыла на фюзеляж по кратчайшему пути. Однако в технологическом отношении такая схема сложна, т.к. пояса лонжеронов, отбортовки продольных стенок в этом случае криволинейны и имеют переменные по размаху малки.
Расположение лонжеронов по образующим линиям крыла обеспечивает прямолинейность и постоянство малок указанных элементов по размаху, что значительно упрощает их изготовление, но масса крыла такой схемы увеличивается за счет большей длины лонжеронов и необходимости постановки силовой бортовой нервюры.
Схема с подкосной балкой обеспечивает конструктивную простоту создания в крыле ниши для размещения стойки шасси.